

Occupational Risk of Cancer Among Pilots

Dr. Paul Grippo Assistant Research Professor Northwestern University

to listen to a **PILOT**

- Individuals often avoid any consideration of cancer until diagnosis.
- This presentation will focus on cancer from the perspective of airline pilots.
- Current strides in cancer research will also be reviewed.

- What Cancer is and is NOT
- Genetics and Epigenetics
- Hereditary vs. Non-Hereditary
- Environmental Risks
 - Occupational
 - Dietary
- Research My Part
- Prevention and Early Detection Your Part

Cancer IS a collection of cells that:

- have an abnormal increase in cell division
- lose specific cell features & functions
- ultimately invade and spread to other tissues

If not stopped, cancer robs the body of nutrients leading to organ failure and death

Cancer is NOT:

- a benign tumor (though some can progress to cancer)
- wholly unpreventable
- unbeatable

If stopped or slowed, individuals with cancer can live a relatively long life with a reasonable quality of life

I. What Cancer is and is NOT

In general, cancer is a genetic disease

genes change \rightarrow cells change \rightarrow cancer develops

What are genes?

- region of DNA that controls a hereditary characteristic
- working DNA subunits information for making proteins
- there are about 22,000 human genes

Exon 1 – makes 1st part of protein; Exon 2 makes 2nd part of protein, etc. Introns – intervening sequences that can regulate gene expression

Chromosome 19 has about 300 identified genes

p13.3		Genes	s Mapped	To Chron	mosome '	19	
CD C34 C2MM		p132	pt8.1	5	p13.8-p18 :		
893		RACES	RFX1	1 1	BST2		chr 19
AZU1		ENF121	NOTCHO	p13.3	FCER2		BCT2
PT TRO BLA2		ZNE20	MEL	piss	HT-L	p arm	CA PM
POLRZE		DNMT ICAMI	MELLI		MF C	CD70	CKROS
EFR4		ICAM2	EPRAL2 INSL3		PKG2	EEF2	DML2
EV61		IVK2	UNKS		UZAF1853	EXT2	Grant_2
RPB15		LDLR	010-00	p/13.2	2NF14	FRFB.	HICBI
TOPO		EPOR	p12			LAN NE M	HK-B2
AMH		PERCEN	PARTA		p13.2-p13.1	PDE44	LGMLB7
240		ACPS	JUND	Taxes)	CADABL.	2NF53A	HVBPC2 NKB1
EMBER 2NES7		2NF58	ELL	p13.1	EA2	2NE544	NK G7
ARS		2NF55 MANB	1.8.452	160.047	MPRO	28177	NMCL
CHAIL		HAND	COMP		100000-0000		HTH6A
GRA15		UCD H	MEF2B ZIVE95	much	p13-1-p12	qam	NTROE
TBXA2R		CALR	21-1-12	S p12 S	PTGERI 204142	A196	NTES
MATE	q13.2	RA.0234	27-P38	Allll	204555	F53B	N F6G
10K-0M2	WKT2	LVLT	201297	100000	ZWF11	DENA4	POBK4 PDE4C
FUT6	SMOLY		25-191	160001	274557	LU	RPL28
FUTS	CYP2F1			X	214530	PIKSE2	RPL40
CAPS	CYP2A6 CYP2A7F			Acres 1	ZNF32	PVPR2	BP 528
RE32	CYP2B7F		912	(*****	XTVFSD	RPS11	
2NES?	CVP286		UCCRES!	Junil		28F19	
MLLTI	CYP2A12		CO. RE	S q12 S		2NF17 2NF27	
C3	CYP2F1P		q13.1	lin		28F/8	1
5821	TOFE		CEBFA	1000000		The lot	1.
GITE2F1	DC KDHA		PEPD				
INS.R	C9M10		- C(P1	100000	contraction of the		
g13.3	CGM7 DGM2		BONIE	q13.1	q12-q13.2		
POSR	CEA		HPM MAG	1020	433.		4.61a-3-a1a.4
ERCCI	NOA		00.22		BLYRB		AAV81
DMR99	DGM1		ATP4A		CORD2 ECH1	g18.2-g18.8	PL TILD.
DH NO	19A		CORED		EIFZAFS	GIFR	FPB_1
CMAHP	RPB19		AFLP1		9R.K3	GPE4	FPR: 2
CALMS	AT7143		00X7A1	q13.Z	NEK 19	FPP5C	FTL.
STD	POU2F2		CAMPA	diss.	MEK 97	TROP	E.11
Ligt	LIPE		8781		NST		KCWC5
DB P	COMP		RFS16 CLC		NENSI		NDUP V2P1
PPL18	OGM3			1	FOLH21		PTOR
RUT1	0.5543		q13.4	a13.3	FD FC ZVE35		98.11
R T2	09M12		KLK5	of carse of	21/11/40		BLC145
EAR	P890		APS	4.	24 1 1 4 2		UNB
GYS1 LEB	PEGR		KL82	-			210220
COR	CIMBO	-	CD 88				2MFS0
KCN47	P9912 P591	Calvis	E TED	013.4			ZMF50
SNEPTO	P336	CGMIT	OKT18	10000			21661
HBC	P897	ARCC1	FEBL				2MF8S
CD-87	065114	FLAUR	25F114				
FRAS	P5G13	FVR	ZNF103	-			
ECSC3	09M15	ECLS	FRKOG	600	IES - BULL -	the Known warden	diameter)
FOLD1	PSG2	APOE	BPS8		IES IN BLUE IN		
SPIE	COM18	APOCI APOCI	NK RP58		ordered on the I and not yet eed		
	P835 P564	APOC4 APOC2	PC.AP		hase LOCI in G		
	00M17	CEM	INNET SVTS	Carl		an chaine ruise	EEG USBBBB
	PBB11	ELC2	7%F134	(gan)	0 0.		Ba 512355

Genes make up about 2% of the total DNA in chromosomes

to listen to a **PILOT**

- Increased chromosome translocations in airline pilots with long-term flying experience
 - association between translocation frequency and flight years (n=83 airline pilots)
 - largest study of its kind
 - total number of participants (n) is still rather low

Occup Environ Med. 2009 Jan;66(1):56-62 From the National Institute for Occupational Safety and Health in Cincinnati, OH.

Point Mutations at the Base Pair Level

What causes genes to change?

- 1. inheritance altered genes
- 2. other disorders chronic diseases, viral infection, inflammation colitis, IBD → colon cancer pancreatitis → pancreatic cancer
- 3. carcinogens smoking, UV radiation
- 4. diet obesity, fat intake, total calories

Last two are epigenetic phenomena

Epigenetics

Something above and beyond normal gene regulation that alters gene expression

Example:

Higher rates of cancer associated with: cigarette smoking and high fat diets

- Cancer involves genetic mutations
- Altered gene expression/protein function:
 - higher level/increased activity similar to the accelerator of a car (oncogenes or growth factors)
 - 2. lower level/lost activity similar to a car brake (tumor suppressor genes)
 - Combination of genetic changes drive normal cells to cancer cells

Individual genes vs. a genetic "circuit"

Combination of genetic changes drive normal cells to cancer cells

to listen to a **PILOT**

As an example, in pancreatic cancer:

higher expression & altered activity – mutant Kras = stuck accelerator

lost expression & no activity – p16 = broken brake

How normal cells "crash" into cancer cells

to listen to a PILOT

- The Bottom Line:
 - Random genetic change, through a mistake in normal gene processing or induced by an epigenetic event, can trigger other genetic alterations
 - A combination of these genetic mutations can induce cellular changes
 - Multiple cellular changes can generate cancer

- Like normal genes, mutated genes can be inherited
- A single altered gene ≠ cancer, rather a higher incidence of certain cancers
- Some genes are more critical than others particularly TSGs, where loss leads to a syndrome example: p53 loss = Li-Fraumeni Syndrome

- 1-2% of all cancers are hereditary
 - seems relatively low
- any given gene mutation = increased risk for cancer
 loss of p53 is common to many types of cancers
- Table of Familial Cancer Syndromes
 online article: Dr. Paolo Radice Istituto Nazionale Tumori, Milano, Italy

Clinical syndrome	Neoplasm	Gene	Product location/ Function	
Familial adenomatous polyposis	Colon	APC	Cytoplasm/cell adhe	
Neurofibromatosist Type 1	Pheripheral neurofibromas	NF-1	Cytoplasm	
Neurofibromatosis Type 2	Schwannomas, gliomas	NF-2	Inner cell adhesion	
Multiple endocrine neoplasia 1	Pituitary, pancreas, parathy	?	?/?	
Multiple endocrine neoplasia 2	thyroid, phaeochromocytoma	RET	Membrane/TKR	
Li-Fraumeni syndrome	Sarcomas, breast cancers	TP53	Nucleus/Transcription	
Von Hippel Lindau disease	Haemangioblas, renal cell	VHL	Membrane?/?	
Familial retinoblastoma	Retinoblastoma, sarcomas	RB	Nucleus/Transcription	
WAGR syndrome	Wilms tumors	WT1	Nucleus/Transcription	
Familial melanoma	Melanomas	CDKN2	Cytoplasm	
	Weidhoffia3	MTS1	Cell cycle	
Ataxia telangiectasia	Lymphomas, breast	ATM	cell cycle control ?	
55 th				
AIR SAFETY FORUM				

Genetic Susceptibility

- 1. Sporadic account for 85-90%
- 2. Familial account for <10%

3. Genetic Syndromes - 3-5%

- Some cancers have lower hereditary risk (like lung and cervical cancers)
- Other cancers have higher hereditary risk (like colon and breast cancers)
- Majority are sporadic cancers
 - develop from mutations induced by carcinogens or other stimuli (derived from <u>epigenetic events</u>)

Practical Application

Can anything be done with inherited genes?

ABSOLUTELY!

Pay attention to your family tree

- Two or more blood relatives with same type of cancer
- Certain cancers at young age
- Two types of cancers in the same blood relative
- National descents/high risk groups

to listen to a

In these cases, you should: (1) enroll in an early screening program (2) may need to seek genetic counseling

Practical Application

Can anything be done with non-hereditary issues?

OF COURSE!

Pay attention to your environment (epigenetic factors)

- exposure to carcinogens
- diet
- severe lifestyle disruptions

More specific risks for airline pilots

- Anything outside of genes and inheritance
 - Occupational Risks = potential long-term exposure to
 - 1. carcinogen(s) = UV light, radiation
 - 2. adverse stimuli = stress, changes in circadian rhythm

- Diet = increased intake of high fat, high sugary foods
- Other = non-work related stress and exposures

IVa. Occupational Risks: Carcinogens

- UV light & cosmic radiation
 - 50 times greater exposure than those in the general population
 - within limits of radiation workers
 - a lifetime increase in cancer at $\sim 1\%$

All of this is correlated with high-altitude, high-latitude routes

Dr. Robert J. Barish, medical radiation specialist & author

to listen to a PILOT

IVa. Occupational Risks: Radiation

Radiation

– limit = 2,000 mrem/yr (recommended by ICRP & FAA) 600 mrem/yr (recommended by NRCP)

- annual dose for an airline pilot = 200-500 mrem/yr
 (Radiat Res 153(5 Pt. 1):526-32; 2000)
- average dose is ~220/yr
 (Aviat Space Environ Med 69(7):621-5; 1998)

IVa. Occupational Risks: Radiation

Radiation Exposure Rates

- Seattle to Portland:
- New York to Chicago:
- Los Angeles to Honolulu:
- London to New York:
- Athens to New York:
- Tokyo to New York:

3 mrem per 100 block hours 39 mrem per 100 block hours 26 mrem per 100 block hours 51 mrem per 100 block hours 63 mrem per 100 block hours 55 mrem per 100 block hours

Health Phys 79(5):591-5; 2000

to listen to a **PILOT**

IVb. Occupational Risks: Stress (Psychological)

The role of stress in cancer development

- poorly understood
- difficult to measure (humans) or induce (models)
- changes in hormones and/or endorphins may contribute (depending on the type of cancer)
- many individual differences
- most studies show that cancer causes stress

There is no conclusive evidence that associates stress with the induction of cancer

Rev Epidemiol Sante Publique. 2009 Apr;57(2):113-23

IVc. Occupational Risks: Chronodisruption

- Changes in Circadian Rhythm
 - an internal biological clock
 - regulates biological processes during a 24-hour period
- Chronodisruption (CD)
 - affects physiology, metabolism, and behavior
 - increased cancer risk with frequent CD

IVc. Occupational Risks: Chronodisruption

Melatonin

- Hair growth and skin pigmentation
- antioxidant and free radical scavenging activity
- suppresses ultraviolet (UV)-induced damage
- a critical factor in internal time-keeping
- biomarker of circadian dysregulation
- both pro-oncogenic & anti-oncogenic properties (colon & prostate) (melonoma & lymphoma)

Endocrine. 2005 Jul;27(2):137-48 J. Pineal Res. 2008; 44:307–315 Endocrine, *vol. 27, no. 2, 137–147*

IVc. Occupational Risks: Chronodisruption

- melatonin lower in the day & higher at night

- number of nights worked ~ $\frac{1}{\text{urinary melatonin levels}}$

prolonged light may reduce melatonin secretion

Example:

In melanoma-bearing mice:

- 1. exogenous melatonin decreased tumor volume/weight
- 2. increase light cycle enhanced tumor progression & malignancy

Cancer Epidemiol Biomarkers Prev. 2008 Dec;17(12):3306-13 J. Pineal Res. 2008; 44:307–315

IVc. Occupational Risks: CD & UV radiation

- A Combination of CD and UV radiation
 - CD = reduced levels of melatonin (less protection)
 - UV = increased exposure to radiation (above average)
 - This might explain 2-3 fold increase in melanoma, particularly in airline pilots on high altitude/latitude routes

Ultimately, additional factors may add to this risk

- High fat diets
 - increase UV-induced skin tumors in rodent systems
 - low fat diet reduced these effects

Mutat Res. 1998 Nov 9;422(1):185-90

- Unclear if this trend is significant in humans
 - high alcohol consumption increased risk for melanoma
 - increased fat did not seem to affect cancer development
 - yet, increased PUFA further modified the risk in cohorts with high alcohol consumption

Am J Epidemiol. 2006 Aug 1;164(3):232-45

IVe. Non Occupational Risks

- Additional sun exposure
- Increased alcohol consumption
- High caloric/high fat diet (esp. in combination with above)

- Cigarette smoking
- Excess traveling further Chronodisruption
- High psychological stress levels

IV. Occupational Risks

Caveats for Consideration

- lower than average mortality rate (good news!)
- near-average cancer incidence rate (overall)
- general good health with frequent check-ups
- relatively small group (compared with other lines of work)

- very good record keeping (flight hours, etc.)
- These bode well for epidemiological studies (The case can be made that more of this should be done)

Increased rate in skin cancer:

- melanoma = 2.3-fold
- squamous cell cancer = 2.1-fold
- basal cell carcinoma = 2.5-fold (over 10,200 pilots)

Aviat Space Environ Med. 2003 Jul;74(7):699-706

- Increased rate in leukemia ?
 - One study showed an increase in CLL*
 - Another showed an increase in AML
 - A third showed no increase in any leukemia

* Radiat Environ Biophys. 2004 Feb;42(4):247-56

IV. Environmental Risks

Table 2: Number of cancers among 458 pilots (9215.5 person-years, 1955–97)

Cancer sites (ICD-7)*	Obs	Ехр	SIR	95% CI
All cancers (140-205)	23	23.68	0.97	0.62 to 1.46
Oesophagus (150)	1	0.36	2.78	0.04 to 15.45
Colon (153)	1	1.57	0.64	0.01 to 3.54
Gall bladder (155.1)	1	0.12	8.33	0.11 to 46.36
Lung (162)	2	3.13	0.64	0.07 to 2.31
Prostate (177)	5	3.91	1.28	0.41 to 2.98
Kidney (180)	2	1.41	1.42	0.16 to 5.12
Malignant melanoma - skin (190)	5	0.49	10.20	3.29 to 23.81
Eye (192)	1	0.10	10.00	0.13 to 55.64
Brain (193)	2	1.14	1.75	0.20 to 6.33
Thyroid (194)	1	0.67	1.49	0.02 to 8.30
Unspecified sites (199)	1	0.49	2.04	0.03 to 11.35
Leukaemia (204)	1	0.59	1.69	0.02 to 9.43
Acute myeloid leukaemia (204)	1	0.26	3.85	0.05 to 21.40

Occup Environ Med. 2000 Mar;57(3):175-9

to listen to a PILOT

Table 6: Number for all cancers (skin, eye, and leukaemia) among 256 Icelandairpilots according to whether ever flying over five time zones

Cancer sites (ICD-7)	Obs	Exp	SIR	95% CI
Never flying over five time zones:				
All cancers (140-205)	12	8.35	1.44	0.74 to 2.51
Malignant melanoma - skin (190)	1	0.11	9.09	0.12 to 50.58
Eye (192)	0	0.03	0.00	- to 122.27
Acute myeloid leukaemia (204)	0	0.08	0.00	- to 45.85
Ever flying over five time zones:				
All cancers (140-205)	7	6.70	1.04	0.42 to 2.15
Malignant melanoma - skin (190)	4	0.16	25.00	6.73 to 64.00
Eye (192)	1	0.03	33.33	0.44 to 185.46
Acute myeloid leukaemia (204)	1	0.07	14.29	0.19 to 79.48

Occup Environ Med. 2000 Mar;57(3):175-9

- Genetics & hereditary features cannot be controlled:
 - inherited genes (you get what you're born with)
 - random genetic mutations (fairly rare)
- Epigenetics & non-hereditary features can be controlled

- environmental factors (air & water quality)
- carcinogen exposure (smoking, UV light)
- diet (high fat and/or high caloric intake)

V. Research (prevent, detect, treat) - My Part

How do we study cancer?

- 1. Tools
- 2. Targets
- 3. Technology

V. Research: Tools

Cancer cells on a plate

pancreatic cancer cells

Cancer cells in a mouse

Cancer cells injected1. under the skin2. at the site of origin (pancreas)

to listen to a **PILOT**

Engineering a Genetically Modified Mouse

- candidate genes
 ablate TSG
 express oncogenes
- 2. gene switches for regulating expression
- 3. methods for building and inserting transgenes

A gene switch that can target specific cell types

Single switch – one room (cell type)

Multiple switch – several rooms (cell types)

Transgenesis

V. Research: Targets

V. Research: Targets

- The search for causative cell signals
 - determine which mutation/signal directly induces cancer a genetic change = contribution to cancer development
 - usually done in plated cells or rodents (the tools)
 must correlate to the human disease
 - probably multiple pathways look for a circuit
 - can mutation or signaling pathway be blocked

V. Research: Technology

V. Research: Technology

Engineer the means to block signals and circuits

- drugs
 - effective (90% inhibition or better)
 - specific (only effect cells of interest)
- radiotherapy
- delivery mechanisms
 - best routes
 - nanotechnology
- combined therapies

Building tools and using them to evaluate targets and technologies for inhibition

Prevention

- Develop models with only precancer
- Diet studies
- Block certain pathways (inhibitors)
- Tea evaluations

Mouse Model Development

Human precancer

Mouse precancer

to listen to a PILOT

high fat diets (ω-3, ω-6, high tallow, Western-style diets)

herbs (Sutherlandia)

Caerulein (promotes inflammation)

Carcinogens (cadmium)

Different types of PUFAs have varying affects
 Compare omega-3 with omega-6 fatty acids

fish oil (omega-3)

corn oil (omega-6)

Frequency of precancerous lesions in EL-Kras Mice

Detection

- Employ MRI to detect early cellular changes before and during precancer development
- Proteomic profile of blood and secreted products
- Vaccinate against known cancer markers

V. Research: Cancer

Therapy

- Develop models with pancreatic cancer
- Chemo and/or Radiotherapy
- Block certain pathways (inhibitors)

V. Research: Cancer

Mouse Model Development

Human pancreatic cancer

Mouse pancreatic cancer

V. Research: Cancer

Liver Metastases in Pdx1-cre/LSL-Kras Mice

Drug Delivery using the same model

Optimal drug delivery (in green) in transplanted tumors (left panel) Poor drug delivery in genetically engineered model (right panel) Visualization by contrast ultrasonography.

to listen to a PILOT

VI. Prevention & Early Detection - Your Part

- What can you do?
 - Hereditary and random mutations = <u>early screening</u>
 - Epigenetics and non-hereditary = minimize your risks

- How can you minimize your risks?
 This is prevention
 - 1. Occupational hazards
 - 2. Diet: on and off "the clock"
 - 3. Other: personal stress and exposures

VIa. Prevention

Occupational Risks

- some exposure is unavoidable: part of the job
- try to limit amount of exposure or reduce intensity
 - avoid repetitive high altitude/latitude routes over many years
 - keep track of annual radiation dose (mrems)
 - protection (sunblock/sunscreen, sunglasses, etc.)
- keep stress levels in check
- avoid or compensate for changes in light-dark cycles

to listen to a

encourage more research studies to be done

VIa. Prevention

Diet

- avoid foods that are:
 - rich in fat and/or fried in fat
 - overly processed (containing things like TRANS fats)
 - high in calories only
- eat foods that are simply prepared and fresh
- attempt to establish a healthy ratio of good fat (PUFA)

- average w-6:w-3 ratio is about 30-40
- a more healthy ratio is closer to 1
- not just eating more fish consider free-range meats

VIa. Prevention

- Non-occupational
 - limit sun exposure (every bit counts)
 - don't smoke
 - avoid repetitive high levels of alcohol consumption
 - keep a modest traveling schedule to avoid further CD
 - maintain activities that you enjoy & reduce stress

- Even with prudent work and lifestyle habits, cancer can develop
- Early detection is the best means of improved outcome
 - almost all cancers are treatable when detected early

to listen to a

 less invasion with no metastasis = very good prognosis

VIb. Early Detection

How to detect cancer early

- pay attention to your body
 - 1. differences in bodily functions
 - 2. pain or discomfort
- regular/routine doctor visits
 - 1. colonoscopy for colon screening
 - 2. PSA test for prostate screening mammography for breast screening
- best to start these screens in your late 40's/early 50's

What can you do with a diagnosis of cancer?

Practical Application

Be informed

- don't hesitate to get a second opinion
- read & study learn as much as you can
- be aware of various therapies and clinical trials
- challenge your doctors

remember, you're not their only patient

- seek out conventional <u>and</u> nutritional therapies
- Be positive
 - many, many people survive a cancer diagnosis
- Be spiritual pray

Semin Oncol Nurs. 2005 Aug;21(3):159-63

- Cancer boils down to primarily two things:
 - 1. your genes can't control this but can know the risk
 - 2. the environment can control most of this includes things like: carcinogen exposure
 - diet and other lifestyle choices

- What can be done to prevent this disease
 - 1. my part = research

The three T's (tools, targets, technology) find new ways to prevent and fight cancer

2. your part = prevention

reduce carcinogenic exposure

balanced diet

pay attention to your body

routine check-ups (including the undesirables)

Acknowledgements

- ALPA
- Captain Bob Solik ALPA Aeromedical Chairman
- Captain John Rosenberg
- Institutional Support & Mentoring over the years: University of Wisconsin (Dr. Eric Sandgren) Medical College of Wisconsin (Dr. Michael Demeure) Northwestern University (Drs. Tom Adrian & Richard Bell) (Drs. Jill Pelling & Susan Crawford)

A Special Appreciation to all of you – for providing safe air travel

