Full Scale Battery Tests

Aircraft response to fires involving large numbers of small lithium batteries

Presented to: ALPA 60th Air Safety Forum By: Harry Webster, FAA Fire Safety Br. Date: August 6, 2014

Summary of Findings From Previous Tests – Lithium-ion

- Capable of thermal runaway, through cell defect, cell damage, heat, rapid discharge, overcharging
- Thermal runaway results in high case temperatures, exceeding 1100 DegF
- Releases flammable electrolyte
- Generates sufficient heat to cause adjacent cells to go into thermal runaway
- Will propagate thermal runaway throughout shipping box, and box to box

Summary of Findings From Previous Tests – Lithium-ion

- Can experience catastrophic disassembly
- Generally do not self ignite, but high case temperatures easily ignite current packing materials, which ignite the electrolyte
- Halon 1301 can suppress the electrolyte fire
- In the presence of Halon, or no ignition source, unburned hydrocarbons from released electrolyte accumulate, increasing the risk of flash fire or explosion

Summary of Findings From Previous Tests – Lithium Metal

- Capable of thermal runaway, through cell defect, cell damage, heat, rapid discharge
- Thermal runaway results in high case temperatures, exceeding 1400 DegF
- Releases flammable electrolyte and molten burning lithium
- Generates sufficient heat to cause adjacent cells to go into thermal runaway
- Will propagate thermal runaway throughout shipping box, and box to box, very rapid fire buildup

Summary of Findings From Previous Tests – Lithium Metal

- Can experience catastrophic disassembly
- Self igniting, will rapidly ignite packaging
- Generates pressure
- Halon 1301 can suppress the electrolyte fire, but not the lithium fire. Has no effect on propagation of thermal runaway.
- In the presence of Halon, unburned hydrocarbons from released electrolyte accumulate, increasing the risk of flash fire or explosion

Full Scale Fire Tests

Federal Aviation Administration

Objective

 To document the characteristics of fires involving large numbers of small lithium batteries in a realistic aircraft environment.

Class E (Main Deck)Cargo Compartment

- Upper deck compartment on most freighters
 - Has fire detection system
 - Means to shut off ventilation flow to the compartment
 - Means to exclude hazardous quantities of smoke, flames, or noxious gases, from the flight crew compartment

Full Scale Fire Test Plan

Baseline

Class E and C Cargo

- Lithium-ion 5000 18650 cells
- Lithium metal 4800
 SF123A Cells
- 5000 mixed alkaline, NiCad, NiMH
- Simulated thermal runaway ignition source
- External fire exposure

Instrumented 727 Test Article

Federal Aviation Administration

Aircraft Ventilation

- Airflow patterns within the aircraft can have significant impact on the behavior of the battery fire and smoke penetration.
- The aircraft air packs are configured differently depending on the location of the fire.
- Two configurations were developed with input from the Boeing Company, one for the main deck class E fire and one for the forward class C compartment.

Conducted Air Exchange Tests

Federal Aviation Administration

Air Exchange Rate Results

- Pressurized configuration
 - Main deck cabin: 5.75 minutes per air change
 - Flight deck: 1.68 minutes per air change
- Unpressurized configuration
 - Main deck cabin: 47.72 minutes per air change
 - Flight deck: 1.71 minutes per air change

Conducted Baseline Test

Federal Aviation Administration

Preliminary Fire Assessment

Class E (Main Deck)Tests

- Aircraft in emergency mode
- High ventilation to flight deck
- No ventilation to main deck
- Fire control is by oxygen starvation

Results Mixed Cell Test

- Test terminated at 102
 minutes with water
- Approximately 700 cells
 were damaged
- Low ceiling temp: 119 DegF@ 40 min
- Moderate battery fire temp: 975 DegF@ 44 min
- Gradual smoke obscuration
 in the compartment
- No smoke on the flight deck

Results Lithium-ion

- Test terminated at 57 minutes with water
- More than half of the cells consumed
- High ceiling temp: 1490 DegF@ 49 min
- High battery fire temp: 1300 DegF@ 55 min.
- Oxygen depletion slowed fire progress
- Some light smoke on the flight deck
- Significant damage to cargo liner

Results Lithium Metal

- Test terminated at 16 minutes with water.
- Approximately half of the cells were consumed.
- Very high ceiling temp: 1700 DegF@ 16 min
- Very high battery fire temp: 2250 DegF@ 12 min
- Oxygen starvation had little or no effect on fire intensity
- Smoke on flight deck in less than 4 minutes from first observable fire, obscured in less than 6 minutes
- Significant cargo liner damage

Class E Lithium Metal Video

Federal Aviation Administration

Ignition Source Results

Class E Compartment

 There was little difference between igniting the battery shipment by simulated thermal runaway vs. an external fire

Class E (Main Deck) Cargo Compartment Fire Containment Summary

Fire Load

- Mixed Cells
- Lithium-ion
- Lithium metal

<u>Result</u> Contained

Marginal

Did not Contain

Explosion from Tablet Battery

Federal Aviation Administration

For More Information

- FAA Fire Safety Website
 - www.fire.tc.faa.gov
 - Triennial Conference proceedings
 - Systems meeting proceedings
 - Lithium battery laptop fire fighting video
 - Lithium battery SAFO's

Contact Information

Harry Webster FAA William J Hughes Technical Center Atlantic City, NJ 609-485-4183 Harry.Webster@faa.gov

